
www.manaraa.com

Hippodrome: running circles around storage administration

Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa Uysal, Alistair Veitch
Storage and Content Distribution Department,

Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 95014

fanderse,mjhobbs,kkeeton,suspence,uysal,aveitch g@hpl.hp.com

ABSTRACT

Enterprise-scale computer storage systems are extremely
difficult to manage due to their size and complexity. It is dif-
ficult to generate a good storage system design for a given
workload and to correctly implement the selected design.
Traditionally, initial system configuration is performed by
administrators who are guided by rules of thumb. Unfor-
tunately, this process involves trial and error, and as a re-
sult is tedious and error-prone. In this paper, we introduce
Hippodrome, an approach to automating initial system con-
figuration. Hippodrome is an iterative loop that analyzes an
existing system to determine its requirements, creates a new
storage system design to better meet these requirements, and
migrates the existing system to the new design. In this paper,
we show how Hippodrome automates initial system configu-
ration.

1 Introduction

Enterprise-scale storage systems containing hundreds of disk
arrays are extremely difficult to manage. The scale of these
systems, the thousands of design choices, and the lack of
information about workload behaviors raise numerous man-
agement challenges. Users’ demand for larger data capac-
ities, more predictable performance, and faster deployment
of new applications exacerbate the management problems.
Worse, administrators skilled in designing, implementing
and managing these storage systems are expensive and rare.

In this paper, we concentrate on the particularly important
problem ofinitial system configuration: designing and im-
plementing the storage system that is needed to efficiently
support the application(s) of a particular workload. Initial
system configuration refers to the process that must occur
before the storage system can be put into production use. It
possesses several key challenges:

� System design: Generating a good system design is dif-
ficult, due to the thousands of device settings and a lack
of workload information. Administrators face an over-
whelming number of design decisions: which storage
devices to use, how to choose the appropriate RAID
level and the accompanying device settings, and how to
map the data onto the configured devices. The design
choices often interact with one another in poorly under-
stood ways, resulting in a very complex design process.

Initial system configuration is further complicated be-
cause administrators often know very little about the
workloads that will execute on the system being de-
signed. Even in cases where workload information ex-
ists, such as when migrating or merging existing appli-
cations onto a new system, the workloads may behave
unexpectedly when combined or when run on a differ-
ent system.

� Design implementation: Implementing the chosen de-
sign is time-consuming, tedious and error-prone. Dur-
ing this step, administrators must interact with numer-
ous graphical and command-line user interfaces to run
hundreds of very specific commands to create logical
units1 (LUs) on the disk arrays, create physical and log-
ical volumes2 at the hosts, and set multiple inter-related
parameters correctly. Unfortunately, a mistake in any
of these operations or the order in which they are per-
formed is difficult to identify, and can result in a failure
of the applications using the storage system.

Traditionally, these storage management tasks have been
undertaken by human experts, utilizing “rules of thumb”
gained through years of experience. For example, one
common approach involves estimating the requirements for
bandwidth and the number of I/O operations per second
(IOPS) based on intuitive knowledge of the application(s)
and measurements taken on a similar, existing system. Bud-
getary constraints and growth expectations also contribute
to the initial system configuration. Administrators select
RAID1 if the workload is I/O intensive, and RAID5 other-
wise. They then map the application data onto these LUs in
an ad-hoc manner, for example, by partitioning the storage
for different applications and then striping across the indi-
vidual LUs. After generating this initial system configura-
tion, they may tune the storage system by measuring it and
rearranging the data to match, or they may choose to put the
system into production, and wait until there are complaints
before improving the system.

1A logical unit is the element of storage exported from
a disk array, usually constructed from a subset of the ar-
ray’s disks, configured using a particular RAID layout (e.g.,
a RAID5 redundancy group). An LU appears to be a single
virtual “disk” to the server accessing it.

2A physical volume is the device file that is used to access
an LU. Logical volumes provide a level of virtualization that
enables the server to split the physical volume into multiple
pieces or to stripe data across multiple physical volumes.

1

www.manaraa.com

This ad-hoc process is expensive because it usually in-
volves the administrator trying a variety of designs. Deter-
mining a suitable design is hard for a human to handle well,
because of the many inter-related parameters. Moreover, im-
plementing the design can be extremely tedious and error-
prone because it requires the administrator to execute a large
number of intricate steps, in the right order, without making
any mistakes. Because of these difficulties, the results of this
process are systems that take a long time to set-up, and yet
are still either over-provisioned, so they are too expensive, or
under-provisioned, so they have poor performance.

In this paper, we describe Hippodrome, a system that au-
tomatically solves the problems of the manual, ad-hoc ap-
proaches described above. Hippodrome automatically de-
signs and implements a storage system without human in-
tervention. Hippodrome is an iterative loop that analyzes a
running workload to determine its requirements, calculates
a new storage system design, and migrates the existing sys-
tem to the new design. By systematically exploring the large
space of possible designs, Hippodrome can make better de-
sign decisions, resulting in more appropriately provisioned
systems. By analyzing a workload’s requirements explicitly,
Hippodrome’s loop converges to a design that supports the
workload. Finally, by automating these tasks, Hippodrome
decreases the chance of human error and frees administra-
tors to focus on the applications that use the storage system.

We present a progression of increasingly complex systems
for initial system configuration to explain the intuition be-
hind Hippodrome’s iterative loop. We start by describing the
current, human-intensive, largely ad-hoc, manual methods.
We analyze the process to determine which components are
needed to convert the manual process into a simple, auto-
matic loop. We then show that it is necessary to increase the
sophistication of each component to overcome limitations in
the initial automated loop. We increase the sophistication un-
til the components are sufficiently advanced to handle most
of the complexity of I/O workloads during initial system con-
figuration.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the component requirements and loop pro-
gression that results in Hippodrome. Section 3 describes our
experimental setup, methodology and workloads. Section 4
presents the results of applying Hippodrome to initial system
sizing of synthetic workloads and the PostMark file system
benchmark. Section 5 discusses related work and Section
6 summarizes the results and describes directions for future
research.

2 System overview

We first introduce the process of initial system configura-
tion by explaining the current practices used by system ad-
ministrators. We then show how the administrators’ practice
can be viewed as an iterative loop. We next describe how
their manual ad-hoc approach can be automated. Finally, we

present a progression of increasingly sophisticated automatic
loops, starting with a simple, automatic version of the ad-hoc
loop, and continuing with increasingly sophisticated compo-
nents to culminate in the Hippodrome loop.

2.1 Today’s manual loop

The process that administrators use to determine an initial
system configuration can be viewed as an ad-hoc iterative
loop. Each stage is performed manually, with some support
from commercially available storage products.

First, administrators use the workload’s capacity require-
ments and a guess about its performance requirements to
build a trial system. Such performance information may
come from previous experience with the application on a dif-
ferent system, or from knowledge of similar applications.
They select a RAID level for the data based on these re-
quirements, as well as budgetary constraints. For instance,
they may select RAID1 if the workload is I/O-intensive, and
RAID5 otherwise, to minimize the overall storage capacity
required for the data. They use the command-line or graph-
ical user interface of the disk array management tools and a
logical volume manager (LVM) to create an initial storage
system. The disk array manager is used to create LUs of the
appropriate RAID level on the disk array, and the LVM is
used to create the corresponding physical volumes and to as-
sign the applicationstores3 to the physical volumes. Then,
databases may use stores to hold their tables and indexes, or
filesystems may use them to hold users’ data.

The administrators then measure and observe the system
using various system- and array-specific monitoring tools to
see how it performs using simple metrics such as the num-
ber of IOPS and/or total I/O system bandwidth (MB/s). The
Veritas Volume Manager [23], for example, supports a com-
mand,vxstat, to measure I/O activity for the LUs of a server.
This Volume Manager’s Visual Administrator will display an
illustration of the storage, using color to draw the adminis-
trators’ attention to the high-activity LUs.

They compare the observed performance to their expec-
tations and to the maximum attainable performance docu-
mented by device manufacturers. These comparisons often
reveal that various parts of the system may be over- or under-
utilized. In these cases, they propose a new system design
that they hope will provide better balance by shuffling the
load between LUs, purchasing additional storage resources,
or both.

They then implement the proposed design by configuring
newly purchased resources as described above, and by using

3Each store in our system is implemented as a logical
volume. A store is a logically contiguous block of storage.
We use stores rather than logical volumes because some stor-
age systems provide other abstractions to virtualize, and our
system could use those instead of the logical volume abstrac-
tion.

July 20, 2001 2 FAST

www.manaraa.com

array tools and the LVM to migrate the stores to the appropri-
ate target LUs. For instance, the HP XP512 [15] and EMC
Symmetrix [10] disk arrays provide assistance for moving
data within a single disk array.

The administrators then start the cycle again at the mea-
surement step, and continue until a satisfactory performance
level is achieved. The loop is completed when all LUs are
below some threshold utilization, and the administrator (and
the users) are satisfied with the system’s performance. Even
for relatively well-understood applications, this process can
take many weeks of time and effort (e.g., it typically takes
well over a month for a team of experts to design and build a
system for a TPC-H benchmark submission, part of which is
spent designing and implementing the storage system.

This iterative configuration process can occur only if a
pool of storage resources is available to the administrators.
Today, this pool of resources is made available in one of
two ways. First, administrators purchase storage resources
based on their prediction of how many storage devices are
necessary for the workload. These predictions often over-
provision to compensate for inaccurate predictions, or to
build in headroom for future growth. Once the purchase
has been made, they will iteratively refine the usage of these
resources. Second, administrators for larger systems may
take their applications to a system vendor’s capacity plan-
ning center (CPC), to use the CPC’s large pool of resources
to determine the appropriate storage and compute resources
necessary to support their target workload.

The increasing demands of storage management are re-
sulting in several new models for storage system provision-
ing, as well. Service providers, such as Exodus [14], al-
low enterprises to lease storage from a pool of storage made
available by third party providers. Companies including
HP, IBM and Compaq support instant capacity on demand
(ICOD) for storage, enabling customers to expand storage
systems nearly instantaneously. These models imply that
there is a pool of storage resources available to be allocated
during initial system sizing.

Finally, the iterative configuration process can only occur
if there is a method for generating a representative workload
on the system before it is deployed into production use. In
any of the storage pool scenarios described above, the ad-
ministrator may set up the application(s) to be run on the new
system. A representative input workload may come from a
log of application requests on an existing production system,
which is then replayed against the system being configured.

2.2 The iterative loop
Analyzing the ad hoc process described in the previous sec-
tion, we observe three stages that are followed in sequence:

� Design new system: Based on available inputs (typ-
ically previous observations of the system behavior),
design a system that will (hopefully) better match the
workload requirements.

Analyze
workload

Implement
design

Design new
system

Figure 1: Three stages of the iterative loop.

� Implement design: Implement the system – create the
LUs on the storage devices, build the logical volume
data, and migrate the existing application setup (if any)
to the new design.

� Analyze workload: Once the system is running, ana-
lyze the system to determine its performance character-
istics. This information can then be used to produce a
better system design.

As described in the previous section and shown in Fig-
ure 1, these stages can form an iterative loop. The loop
can be bootstrapped at the design stage using only the ca-
pacity requirements of the application(s), which provide an
absolute lower limit on the number of storage devices re-
quired. An initial guess at performance, for example ob-
tained through experience with similar applications, can also
be used as a starting point.

Once this initial system design has been created, the loop
iterates to generate a design that better meets the actual re-
quirements of the workload. On each iteration, it analyzes
the workload on the current system, summarizing informa-
tion about I/O and capacity usage. The design stage uses the
summary to generate an improved system design. Finally, it
implements the new system design and migrates the existing
system to the new design.

During the course of several iterations, the storage sys-
tem performance is improved through the addition of more
devices over which the load can be distributed until the per-
formance of the application as a whole, that is, both server
and storage, is not limited by the storage system. The loop
converges on a suitable system design when the workload’s
performance requirements are satisfied and the number of
storage devices in the system stops changing.

The time to converge is determined by how long each
iteration takes and how many loop iterations must be per-
formed. The time for each iteration is dominated by running
the application and implementing the design. Application
run times can range from minutes to hours. Implementing
the design can also take minutes to hours, because it involves
moving some fraction of the (potentially sizeable) data in the

July 20, 2001 3 FAST

www.manaraa.com

system. The number of loop iterations depends on the size of
the final system and the degree of mismatch between the ini-
tial design and the final design necessary to satisfy the work-
load’s performance requirements. The number of iterations
may be reduced if the initial design is made using an initial
performance guess.

Sometimes the user of the system may not be willing to
buy the amount of storage required to support the perfor-
mance requirements of the workload. In this case, the loop
can be configured to produce a system design that is lim-
ited to a maximum price with the storage workload balanced
across the available devices. Although this design will not
meet the workload’s performance requirements, it will meet
the user’s cost constraints. Conversely, the user may wish to
purchase more resources to accommodate future growth or
to leave headroom for unexpected peak loads.

Bin
Packing
Solver

Automatic

IOPS Only

Trace/Analysis

IOPS

Models

Single

Migration

Manua l

IOPS Only

Trace/Analysis

IOPS

Models
Single

Migration

Operator

Ba lancing System Load

Single

Migration

Multiple

Migration

H ippodrome

IOPS Only

Trace/Analysis

IOPS

Models

Single

Migration

Multiple

Migration

Single
Move
Solver

IOPS

Models

Bin
Packing
Solver

IOPS Only

Trace/Analysis

Single
Move
Solver

Single
Move
Solver

IOPS + On/Off +
RunCnt + Phasing
Trace/Analysis

Phasing

Models

Adaptive

Solver

Single
Move
Solver

Figure 2: Loop progression. As the analysis, solver and mi-
gration components improve, so does the resulting loop ap-
proach. The automatic approaches are described in more de-
tail in Section 2.3 through Section 2.5.

A simple example may help to illustrate how the different
components of the loop work together. Consider a workload
that uses 10 filesystems. Each filesystem needs a logically
contiguous part of the storage system. We call each of these

parts astore, as described above. Assume that each store
is 1 GB in size and that the LUs in the storage system are
18GB in size, capable of performing 100 IOPS. The initial
capacity-only design will place all ten stores on a single LU.
Now, assume that when the application runs, it performs 50
IOPS to each filesystem. During the subsequent iteration of
the loop, the analysis stage summarizes the capacity and I/O
requirements of the workload. The design stage uses this in-
formation to choose a new design that has at most two stores
on each LU, as only two stores will fit onto an LU with-
out exceeding the 100 IOPS throughput limit. Finally, the
loop implements the new design by migrating eight of the
ten stores from the single LU onto four new LUs allocated in
the design stage.

As demonstrated in our example, there are four key com-
ponents used to implement the iterative loop shown in Fig-
ure 1. The first component, which implements theana-
lyze workloadstage, monitors a workload’s performance and
summarizes its capacity and performance requirements for
an input to the design system stage. Thedesign systemstage
is implemented by two components: a performance model
and a design engine, orsolver. The performance model com-
ponent encapsulates the maximum performance capabilities
of the storage device. The solver provides the ability to de-
sign a new, valid storage system (e.g., one that does not ex-
ceed the available capacity or I/O performance of any device
in the system, as determined by the model). The final compo-
nent performs theimplement designstage, including migrat-
ing the existing design to the proposed one. The implemen-
tation of each of the analysis, model, design, and migration
components can range from simple to complex.

In the following subsections, we describe a progression
of successively more sophisticated versions of the iterative
loop, by describing the improvements made to each of the
components. We begin with a simple automated loop, which
implements the manual loop executed by human administra-
tors today, and progress to the automated Hippodrome loop,
which employs advanced components to handle most of the
complexities of I/O workloads. This progression is illus-
trated in Figure 2. Each step of the progression is a coherent
implementation of the loop that is more accurate, more flex-
ible, or faster than the previous approach. For example, the
solution described in Section 2.4 achieves a balanced load in
the final system, whereas the one in Section 2.3 does not. We
will describe how making improvements to some of the com-
ponents requires improvements to other components. For ex-
ample, a solver that can create a design that moves multiple
stores requires a migration component that can migrate mul-
tiple stores as a logically single operation.

2.3 Automating the loop

The primary disadvantage of today’s manual loop is that it re-
lies on administrators to make all of the decisions and to do
all of the work. Administrators must build up enough expe-

July 20, 2001 4 FAST

www.manaraa.com

rience to determine when an LU is overloaded and to decide
which stores to move. They need to test many possible ac-
tions and determine which ones work and which ones don’t.
Some tools provide some degree of automation for moving
stores within a single disk array. However, if they use mul-
tiple arrays, which is common in enterprise-scale systems,
they must manually move stores between arrays. Because of
these problems, this approach is extremely human-intensive,
and hence slow, expensive and error-prone.

We can remove the human from the loop by automating
each of the manual stages described above. This simple au-
tomated loop is shown as the second approach in the loop
progression of Figure 2.

2.3.1 Analysis component

The workload analysis component of the simple automated
loop takes a trace4 of I/Os from the running workload and
calculates a summary of the trace. The summary consists
of two parts: storesandstreams. The stores represent the
capacity requirements of the logical volumes in the system.
The streams represent the I/O accesses to a store, in this ap-
proach the number of I/Os to the store divided by the elapsed
time of the trace (IOPS). Each stream refers to accesses to
a single store, and each store has at most one correspond-
ing stream. In the Hippodrome approach, the streams will
capture many more properties.

2.3.2 Model component

The performance model for the automated loop adds together
the IOPS for each stream on a particular LU and compares
the sum to a pre-specified maximum, obtained from man-
ufacturers’ specifications or from direct measurement. For
example, a disk can re-position in about 10ms, so an LU con-
sisted of a single-disk can perform about 100 IOPS.

2.3.3 Design component

The design component automates the simple “move one store
from an overloaded device” algorithm sometimes used by
administrators. It picks one store from an overloaded LU
and checks to see whether it fits (according to the models)
on another LU. If it does, then the store is moved to that LU.
If it doesn’t fit on any of the remaining LUs, more storage
is added to the system by, for example, enabling additional
ICOD storage, and the store is moved to the new LU.

4The CPU overhead of taking the trace in our experience
is 1-2%; the traces can take up a few GB for a day-long trace,
which is negligible as the trace only has to be kept until anal-
ysis is run.

2.3.4 Migration component

The migration component of the automated loop copies the
data for the store to be moved to the new location, and deletes
the old copy. Because we are addressing initial system con-
figuration, we can stop the application during the migration
phase, so we do not have to worry about application accesses
to the store during the migration execution. The migration
stage also does not need to worry about space problems on
the target device because the solver would not suggest the
new location for the store unless sufficient free space exists
on the target LU.

2.3.5 Problems with the simple automated loop

Because the above approach is a simple automated version
of what the administrator does manually, it has a number
of problems: it may not balance the load in the system, it
may allocate more resources than required, and the simplistic
models that it uses may lead to poorly provisioned systems.

First, the simple automated loop may not balance the load
in the system, because it makes all of the design and migra-
tion decisions locally. Consider a scenario where each LU
is capable of handling 100 IOPS, and the starting point is
generated using only capacity information. Imagine we start
with nine stores requiring 25 IOPS, all packed onto a single
LU. After four iterations, the first LU would still contain five
stores (at a total of 125 IOPS), and the second LU would con-
tain the remaining four stores (at a total of 100 IOPS). One
additional iteration would move the fifth store from the first
LU onto a third LU. The final system would then have two
LUs, each with four stores and 100 IOPS total load, and a
third LU with a single store and 25 IOPS total load. A more
balanced design would put three stores and an aggregate load
of 75 IOPS on each of the three LUs.

Second, this approach may use more resources than neces-
sary to satisfy the workload in the final system, also because
of localized decision making. Consider a system with three
LUs each capable of 100 IOPS. Two LUs each have four
stores at 20 IOPS each (for a total of 80 IOPS), and the third
has two stores at 60 IOPS each (for a total of 120 IOPS). The
solver will choose one of the 60 IOPS stores from the over-
loaded LU and move it to a new LU. A better choice would
be to swap two of the 20 IOPS stores on one of the first two
LUs with the 60 IOPS store on the third LU, creating a sys-
tem design of 2 20 IOPS stores and 1 60 IOPS store on two
of the LUs and 4 20 IOPS stores on the remaining LU, which
fits within the available IO capacity of the LUs.

Finally, since this approach uses an extremely simplistic
measure of performance, it ignores many aspects of device
utilization, such as request size, request type and sequential-
ity. For example, a workload that performs 100 random 64k
reads/second is much more disk-intensive than a workload
that performs 100 sequential 64k reads/second, but the IOPS
metric considers those two access patterns to result in the
same device utilization.

July 20, 2001 5 FAST

www.manaraa.com

2.4 Balancing system load
As shown in Figure 2, we can build upon the simple auto-
mated loop approach described in the previous section by
incorporating new design and migration components. These
components tackle the problems of unbalanced final systems
and purchasing too many devices. This approach continues
to use the analysis and model components of the previous
approach, so we do not discuss those components here.

2.4.1 Improved design

To make the loop produce a balanced final system and not
over-provision, we must improve the design stage. The prob-
lem of efficiently packing a number of stores with capac-
ity and IOPS requirements is very similar to the problem of
multi-dimensional bin packing. Although bin-packing is an
NP-complete problem, there are several algorithms that pro-
duce good solutions in general [11, 17, 19]. We extend the
bin-packing algorithms to balance the load after generating a
successful solution. The final load-balancing can be done by
removing individual stores and attempting to re-assign them
to a location that results in a more balanced solution. The
final load-balancing step is restricted to produce a solution
no more expensive than the input to that step.

2.4.2 Improved migration

The bin-packing algorithms may propose a new system de-
sign that requires moving multiple stores. Unfortunately,
there may not be sufficient space on the target LU(s) to move
all of the stores. For example, if all of the devices are nearly
full, and we have to swap some of the stores, then we may
need to temporarily move a store to scratch space to per-
form the swap. The previous approach didn’t have this prob-
lem because the solver guaranteed that the single store to be
moved would fit onto the target LU. This guarantee does not
hold for multiple store migration. As a result, we need a
migration component which can move multiple stores in a
single iteration.

For this approach, multiple-store migration consists of a
planning phase and an execution phase. The planning phase
calculates a plan which tries to minimize the amount of
scratch space which is used and minimize the amount of data
which needs to be moved. The migration problem is also NP-
complete, as it is reduceable to subset sum [13], so we use
a simple greedy heuristic that will move stores to the final
location if possible, and will otherwise choose a candidate
store and move all of the stores blocking it into scratch space.
This heuristic creates a sequential plan for the migration. If
we can move parts of a store at a time instead of having to
move the entire store,5 we can use the more advanced algo-

5The HP-UX logical volume manager, which provides
the underlying mechanisms for migration execution, does
not currently support moving part of a store.

rithms found in [2], which generate efficient parallel plans.
In the execution phase we can apply the same approach

used in the previous automated loop, that is copying the
stores to the appropriate destination (either scratch space or
the final destination). Another possible approach is to copy
the data from a “master copy” of the stores to the final des-
tination. This second approach, commonly used in capacity
planning centers, has the disadvantage of requiring double
the storage capacity to hold a copy of both the master and
working data stores.

2.4.3 Problems with the load-balancing loop

The primary limitation of the load-balancing approach is that
the simplistic IOPS models used so far do not sufficiently
capture the performance differences between sequential and
random accesses, reads vs. writes, and the on/off behavior of
streams. Thus, the challenge remaining is to more accurately
model the performance of storage systems.

More complex models will also highlight a problem with
the bin-packing algorithms. They assume that each of the
requirements (e.g., performance and capacity) are additive.
For example, if the utilization of stores1 is u1, and the uti-
lization of stores2is u2, they assume that the utilization ofs1
ands2on the same device isu1+u2. These assumptions are
fine for the models used in the current approach, since both
the IOPS and capacity requirements are additive. However,
more complex performance models are not additive.

2.5 Hippodrome
Hippodrome, shown at the bottom of Figure 2, builds upon
the previous approach by greatly improving the performance
models and improving the design component to take advan-
tage of them.

2.5.1 Improved analysis

The simplistic models used in previous approaches required
only very simple analyses. In Hippodrome, we improve the
analysis component to capture properties necessary to im-
prove the device models. In particular, we add all of the
attributes shown in Table 1.

We model an I/O stream as a series of alternating on/off
periods. During an on period, we measure four parameters
seperately for reads and writes. The first parameter is there-
quest rate, which is the mean of the read (respectively write)
request rates during on periods. The second parameter is
the meanrequest size. The third parameter is therun count,
which is the mean number of sequential requests. A request
is sequential if its start offset is at the location immediately
after the end offset of the previous request. The fourth pa-
rameter is thequeue length, which is the mean number of re-
quests outstanding from the application(s). Because streams
can be on or off at different times, we also model the inter-
stream phasing. Theoverlap fractionis approximately the

July 20, 2001 6 FAST

www.manaraa.com

Attribute Description Units
request rate mean rate at which requests arrive at the device requests/sec
request size mean length of a request bytes
run count mean number of requests made to contiguous addresses requests
queue length mean size of the device queue requests
on time mean period when a stream is actively generating I/Os sec
off time mean period when a stream is not active sec
overlap fraction fraction of the “on” period when two streams are active simultaneouslyfraction

Table 1: Workload characteristics generated by Hippodrome’s analysis stage.

fraction of time that two streams’ on periods overlap. The
actual definition used by the models is slightly more involved
because of the queuing theory used in the models and is de-
scribed in [7].

2.5.2 Improved performance models

Hippodrome uses the table-based models described in [1],
which improve on the simplistic performance models of pre-
vious approaches by differentiating between sequential and
random behavior, read and write behavior, and on-off phas-
ing of disk I/Os.

The performance models have three complimentary parts.
The first part reduces the sequentiality of interfering streams
and increases the overall queue length of overlapping
streams. The second part uses tables to estimate the uti-
lization of each individual stream based on the new, updated
metrics. The third part combines together the utilizations for
multiple streams based on the phasing information to calcu-
late the overall utilization of each LU.

The models take as input for both reads and writes the
mean request rate, request size, queue length and sequential-
ity, as described in the analysis section.

The input queue length and sequentiality are adjusted to
take into account the effect of interactions between streams
on the same LU using the techniques described in [22]. The
sequentiality is decreased for two streams that are on simul-
taneously, because the overlap will cause extra seeks. The
queue length is increased because there will be more out-
standing I/Os, giving the disk array more opportunity for re-
ordering.

The utilization of each stream is calculated using a table of
measurements. The model looks up the nearest table entries
to the specified input values for the stream, and then per-
forms a linear interpolation to determine the maximum re-
quest rate at those values. Given the maximum request rate,
the utilization is the mean request rate of the stream divided
by the maximum possible request rate.

The third part of the model then calculates the final uti-
lization of each LU by combining the estimated stream per-
formance values using the inter-phasing algorithms found in
[7]. The algorithms use queuing theory techniques so that
the utilization of two streams is proportional to the fraction

of time that they overlap.

2.5.3 Improved design

Introducing the more complex models violates the bin pack-
ing algorithms’ assumption that individual stream utiliza-
tions are additive, as described in Section 2.4. Because two
sequential streams cause inter-stream seeks, the utilization
of two simultaneous sequential streams is higher than the
sum of the utilization of either stream individually. Con-
versely, because two streams may not both be on at the same
time, inter-stream phasing implies that the utilization of two
streams may be less than the sum of the utilization of the
individual streams. We therefore need an improved design
component that can cope with the more accurate, but more
complex model predictions.

The adaptive solver [3] in the Hippodrome design stage
builds on the best-fit approaches found in [11, 17, 19] and
augments them with backtracking to help the solver avoid
local minima in the search space of possible designs.

The adaptive solver operates in three phases. The first
phase of the solver algorithm attempts to find an initial, valid
solution. It does this by first randomizing the list of input
stores, and then individually assigning them onto a growable
set of LUs. The solver will assign stores onto the best avail-
able LU, and if the store does not fit onto any available LU
because the resulting utilization or capacity would be over
100%, then the solver will allocate an additional LU. The
best LU is the one closest to being full after the addition of
the store, since the aim is to minimize the number of LUs.

The second phase of the solver algorithm attempts to im-
prove on the solution found in the first phase. Randomized
backtracking extensions are used, which enable the solver to
avoid the bad solutions that would have been found by the
simpler algorithms. The solver randomly selects an LU from
the existing set, removes all the stores from it, and re-assigns
those stores in a similar manner to the assignments of the
first phase. It repeats this process until all of the LUs have
been reassigned, and then goes back and repeats the entire
reassignment process two more times6. At the end of this

6A configurable parameter, two is more than sufficient for
these workloads.

July 20, 2001 7 FAST

www.manaraa.com

phase, we have a near-optimal but non-balanced assignment
of stores to LUs, using the minimum necessary storage con-
figuration.

The third phase of the solver algorithm load-balances the
best solution found in phase two in the same way as for the
bin-packing algorithm. The solver removes a single store
from the assignment and then re-assigns it with the goal of
producing a balanced packing, rather than the goal of a tight
packing that was used in the first two phases. The solver
has already packed the stores tightly in the first two phases,
and guarantees that the balanced solution does not increase
in cost. The third phase repeats the process of randomly se-
lecting a store and re-assigning it, with the aim of producing
a more balanced solution.

Experiments with this solver have found that it produces
good solutions. For the cases where we can prove optimality
(e.g. synthetic workloads), the solver generates optimal solu-
tions. For more complex cases, we cannot prove optimality
because the problem we are addressing is NP-complete; in
practice, the solver seems to do well on realistic inputs.

2.6 Hippodrome vs. Control Loops

The Hippodrome (and the load balancing) loop does not be-
have like a simple control (or, feedback) loop, because it con-
tains models of the system it is designing. As a result, if
the workload remains constant, the design that is generated
also remains constant. This is different from a control loop
which will increase and decrease the available resources and
use some metric to perform a “binary search” for the cor-
rect amount of resources. Even if the workload does remain
constant, a control loop may have to continually adjust the
resources to see if the metrics of interest are changing.

Both Hippodrome and control loops take a period of time
to converge, but for different reasons. A control loop takes
the time to converge because it tries to adjust the set of con-
trol parameters of the system based on the inputs. In the
Hippodrome case, the workload is actually changing while
the system is trying to converge. In the beginning, the work-
load can’t actually run at its target rate, and as a result when
the workload is given an expanded system, it uses the ex-
panded resources and may still request more until the storage
system is no longer the bottleneck. Once the system has con-
verged, the workload’s requirements are met and the system
no longer changes.

The Hippodrome loop can exhibit theappearanceof os-
cillation if the workload is running very close to the border
between a resource increment. For example, if an LU can
support 100 IOPS, and a workload requires 100 IOPS with
a standard deviation of 2 IOPS, the system will oscillate be-
tween one and two LUs as the standard deviation causes the
requirements to go above and below 100 IOPS.

2.7 Breaking the loop

With each of the loops presented in this section, a few basic
assumptions have been made. It is possible that these as-
sumptions are not true which in turn forces the loops not to
converge to a valid configuration.

The first assumption is that the host operating system is
capable of providing information on the workload, such as
the request rate of a given workload. In the case of Hippo-
drome the additional set of workload characteristics shown in
Table 1 are also required. Fortunately, the measurement in-
terfaces on most modern operating systems make it possible
to record this information. A related issue is the fidelity of
the information – ideally, the system traces all I/Os, and does
not drop or otherwise summarize the I/O records. Doing so
would result in inaccurate information being supplied to the
design stage, which would in turn result in a design that did
not match the actual workload requirements. While we can-
not control this, our experiments on HP-UX systems have
shown that this is not a problem, except under extremely
loaded conditions. We have observed this only in the lab-
oratory, using specialized tools, and never using real-world
applications.

The second assumption is that applications do not modify
their behavior based on knowledge of their data layout on
the storage system. Such applications would, in our belief,
interact poorly with any of the loop approaches presented,
as they would not maintain a constant workload behavior as
iterations of the loop modify the storage system. In this case,
it is possible that the loops would be unable to converge to
a stable design. Since the role a logical volume manager is
to virtualize the storage system and most applications rely
on logical volumes (either raw or through a file system), the
physical data layout is not visible by the applications. This
makes it difficult for applications to modify their behavior
based on the data layout.

Finally, overly optimistic performance models could po-
tentially cause Hippodrome to settle on a design that does
not support the given workload. This is due to the fact that
the design stage depends on the models to allocate resources.
Overly pessimistic models, on the other hand, cause Hippo-
drome to generate over-provisioned designs that cost more
than the necessary amount to support the workload. While
the current models incorporated into Hippodrome have been
validated over a wide range of workloads, we have encoun-
tered a few situations in our experiments where these behav-
iors occurred.

In summary, there are a few scenarios that may “break the
loop”. Two of these are external to Hippodrome, and there is
little we can do about them, except identify them when they
occur, so that remedial action can be taken. The third, that
of inaccurate models, is of more concern, since the models
are fundamental to the correct operation of the system; this
is currently an active area of investigation.

July 20, 2001 8 FAST

www.manaraa.com

3 Experimental Overview

In this section, we give an overview of the set of experiments
we run to determine how Hippodrome performs. Our exper-
iments focus on the following questions:

� Convergence: How fast does the Hippodrome converge
to a valid system design that supports a given workload?

� Stability : Does Hippodrome produce stable system de-
signs that do not oscillate between successive loop iter-
ations after convergence?

� Resource allocation: Does Hippodrome allocate a rea-
sonable set of resources for a given workload?

3.1 Workloads

Our evaluation is based on a variety of synthetic workloads
and a modified version of the PostMark [18] benchmark.
The synthetic workloads are useful for validating whether
the Hippodrome loop performs correctly, because we can de-
termine the expected behavior of the system. The PostMark
benchmark is useful because it lets us investigate how Hip-
podrome performs under a slightly more realistic workload
that simulates an email system.

In our experiments, we used synthetic workloads shown in
Table 2 with fixed-size, random requests; generating a load
that ranges between 12.5 IOPS to 50 IOPS for each indi-
vidual stream. We also used workloads that exhibit com-
plex phasing behavior where groups of streams had corre-
lated on/off periods. We generated these workloads using
a synthetic load generator capable of controlling the access
patterns of individual streams. For each stream, it generates
the access pattern based on the request rate, request size, se-
quentiality, maximum number of outstanding requests and
the duration of on/off periods. We used the Poisson arrival
process for each stream in the synthetic workloads and lim-
ited the number of requests outstanding from a stream at a
given time to a maximum of 4 requests.

We also used the PostMark benchmark [18], which simu-
lates an email system, in our experiments. The benchmark
consists of a series of transactions, each of which performs
a file deletion or creation, together with a read or write. Op-
erations and files are randomly chosen. Using the default
parameters, the benchmark fits entirely in the array cache,
and exhibits very simple workload behaviors, so we scaled
the benchmark to use 40 sets of 10,000 files, ranging in size
from 512B to 200KB. This provides both a large range of I/O
sizes and sequentiality behavior. In order to vary the inten-
sity of the workload, we ran multiple identical copies of the
benchmark simultaneously on the same filesystem. The data
for the entire PostMark benchmark was sized to fit within a
single 50 GB filesystem.

Parameter Always on Phased
Store size (MB) 1024 1024
Number of stores 100 100
Request size (KB) 32 32
Request rate 12.5, 25 50
(IOPS/stream)
Request type read read
Request offset 1KB aligned 1KB aligned
Run count 1 (random) 1
On/Off periods (sec) always on 4.5 / 5.5
Correlated Groups n/a 2 stream groups
Arrival process open Poisson open Poisson

Table 2: Common parameters for synthetic workloads.

3.2 Experimental infrastructure

Our experimental infrastructure consists of an HP FC-60 disk
array [16] and an HP 9000-N4000 server. The FC-60 array
has 60 disks, each of which is a 36 GB Seagate ST136403LC
disk, spread evenly across six disk enclosures. The FC-60
has two controllers in the same controller enclosure with
one 40 MB/s Ultra SCSI connection between the controller
enclosure and each of the six disk enclosures. Each con-
troller has 512 MB of battery-backed cache (NVRAM).
Dirty blocks are mirrored in both controller caches, to pre-
vent data loss if a controller fails. The FC-60 is connected
to a Brocade Silkworm 2800 switch via two FibreChannel
links, one for each controller.

Our HP 9000-N4000 server had seven 440 MHz PA-RISC
8500 processors and 16 GB of main memory, running HP-
UX 11.0. The host uses a separate FibreChannel interface to
access the controllers in the disk array.

We have configured each of the LUs in the system as 6
disk RAID-5 with a 16 KB stripe unit size. The common
configuration allows us to avoid the multi-hour reconfigura-
tion time.

4 Experimental Results

In this section we discuss the results of our experiments using
the synthetic workloads and the PostMark benchmark. For
each workload, Hippodrome generates an initial system de-
sign based on the capacity requirements and then iteratively
improves the system design until it converges to support the
workload. We do not expect the loop to converge in a single
step, because the workloads may not be able to run at full
speed on the initial capacity-only design. We show that the
loop converges quickly and that the system design remains
constant once the loop converges. We also show for the syn-
thetic workloads that providing initial performance estimates
can speed up the convergence of the loop.

July 20, 2001 9 FAST

www.manaraa.com

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11

A
gg

re
ga

te
 r

eq
ue

st
 r

at
e

(r
eq

ue
st

s/
se

c)

Loop iteration

full scale cap only achieved
full scale underest achieved

full scale target

(a) Average request rate

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 L

U
s

Loop iteration

full scale cap only
full scale underest

(b) Number of LUs.

Figure 3: (a) Target and achieved average request rates at
each iteration of the loop for the synthetic workloads with a
target aggregate request rate of 2500 req/sec. (b) Number of
LUs used during each iteration.

4.1 Synthetic workloads

We start with simple synthetic workloads so that it is easy to
understand the behavior of the loop. We present two sets of
results, one where all streams are on at the same time (sec-
tion 4.1.1), and one where streams have correlated on and off
periods (section 4.1.2).

4.1.1 Always on workloads

Figure 3(a) shows the target I/O rate and the achieved I/O rate
for the synthetic workloads at each iteration of the loop. The
figure illustrates two sets of experiments with different input
assumptions: one using only capacity information (labeled
“cap only”), and one using initial performance information
– an underestimate (labeled “underest”). For the capacity-
only design, we see that Hippodrome’s storage system design
converges within five loop iterations to achieve the target I/O
rate of the synthetic workload (2500 requests per second).

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11

A
gg

re
ga

te
 r

eq
ue

st
 r

at
e

(r
eq

ue
st

s/
se

c)

Loop iteration

half scale cap only achieved
half scale overest achieved

half scale target

(a) Average request rate

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 L

U
s

Loop iteration

half scale cap only
half scale overest

(b) Number of LUs

Figure 4: (a) Target and achieved average request rates at
each iteration of the loop for the synthetic workloads with a
target aggregate request rate of 1250 req/sec. (b) Number of
LUs used in each iteration.

Figure 3(b) shows the number of LUs allocated by Hip-
podrome at each loop iteration to achieve the target I/O rate.
The system converges in five loop iterations starting from
only capacity requirements. In the first four iterations, the
LUs are over-utilized, and Hippodrome allocates new LUs,
increasing the system size to better match the target request
rate. As more LUs are added, smaller fraction of the LUs’
capacity is used for the workload’s data. As a result, the seek
distances got shorter and the disk positioning times are re-
duced. However, our performance models were calibrated
using the entire disk surface, and therefore slightly under-
estimate the performance of the LUs when a fraction of an
LU is used. As a result, Hippodrome allocates two more
LUs at the fifth iteration despite the application achieving its
target rate (as discussed in Section 2.7). After convergence,
however, the system design does not oscillate between suc-
cessive loop iterations. These results show that Hippodrome
can rapidly converge to the correct system design, using only
capacity information as its initial input.

July 20, 2001 10 FAST

www.manaraa.com

Figure 3 also demonstrates how Hippodrome can use ini-
tial performance estimates to allow the system to converge
more rapidly. The system converges in a single iteration by
taking advantage of the initial, conservative, but incorrect,
performance estimate of 1250 requests per second.

Figure 4 shows that Hippodrome uses the minimal num-
ber of resources necessary to satisfy the workload’s perfor-
mance requirements. The target request rate for both work-
loads is 1250 requests per second, which can be achieved
using only five LUs. Given only capacity requirements as a
starting point, the loop converges to the target performance
and correct size in three iterations. Given an initial (incor-
rect) performance estimate that the aggregate request rate is
2500 requests per second (twice the actual rate), the loop
initially over-provisions the system to use 10 LUs, easily
achieving the target performance. The analysis of the ac-
tual workload in the first iteration shows that the resources
are under-utilized, and Hippodrome scales back the system
to use five LUs in the second iteration.

4.1.2 Phased workloads

We also ran experiments where groups of streams had cor-
related on/off periods. In these experiments, we used two
stream groups, with all of the streams in the same group ac-
tive simultaneously and only one group active at any time.
Each group has an IOPS target of 2500 requests per second
during its on period, requiring all 10 LUs available on the
disk array. Clearly, the storage system could not support the
workload if both of the stream groups were active at the same
time, but since the groups become active alternately, it is pos-
sible for the storage system to support the workload. Figure 5
shows the average request rate achieved. We can see that the
behavior of this workload is similar to the earlier always on
workload.

We now look at the distribution of the stores across the
LUs. There are 100 stores in total; 50 in each group. What
we expect is that each of the 10 LUs will end up contain-
ing 5 stores from group 1 and 5 stores from group 2. The
imbalance of an LU is therefore the absolute value of the dif-
ference between the number of group 1 and group 2 stores on
that LU. Therelative imbalanceover the entire storage sys-
tem is then the sum of the imbalance of each LU divided by
the number of LUs. In a balanced system, this metric should
converge to zero. Figure 6 illustrates the relative imbalance
for the phased workload. This figure shows that the solver
correctly puts an equal number of stores from each group on
each LU for the phased workload; the imbalance goes to zero
once the storage design has sufficient LUs.

4.2 PostMark
We ran the PostMark benchmark with a varying number of
simultaneously active processes, which allows us to see the
effect of different load levels on the behavior of the loop.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11

A
gg

re
ga

te
 r

eq
ue

st
 r

at
e

(r
eq

ue
st

s/
se

c)

Loop iteration

phased achieved
phased target

(a) Average request rate

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 L

U
s

Loop iteration

phased

(b) Number of LUs

Figure 5: (a) Target and achieved average request rates at
each iteration of the loop for the synthetic workloads with
two correlated stream groups with a target aggregate request
rate of 2500 req/sec. (b) Number of LUs used in each itera-
tion.

Unlike the experiments performed with synthetic workloads,
there is no predetermined goal for this system, except to pro-
vide “good” performance. In order to determine what “good”
was in practice, we first ran a set of experiments with the
PostMark filesystem split over a varying number of LUs.
Figure 7 shows how the PostMark transaction rates change
as a function of the number of LUs and processes used. As
can be seen, the system is limited primarily by the number of
LUs. In all cases, the performance continues to increase as
resources are added, although with diminishing returns. We
presume that the performance will eventually level off, due
to host software limitations, but we did not observe this for
any except the one process case. Ideally, Hippodrome would
exhibit two properties with this workload – first, it would
converge to a stable number of LUs, and not keep trying to
indefinitely expand its resources, and second that the system
converged to would be near the inflection point of the perfor-
mance curve, i.e. increasing the number of LUs beyond this

July 20, 2001 11 FAST

www.manaraa.com

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12

R
el

at
iv

e
im

ba
la

nc
e

Loop iteration

phased workload

Figure 6: Relative imbalance of the two stream groups over
the storage system for the phased workload.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9

T
ra

ns
ac

tio
n

ra
te

LUs

1 process
2 processes
3 processes
4 processes
5 processes

Figure 7: PostMark transaction rate as a function of number
of LUs and processes used.

point would not result in further performance increases.
When we first ran the PostMark system, we found that the

system did converge, but to a system that was well below
the achievable performance levels. This is indicative of the
models under-predicting the utilization of the storage system,
a problem discussed in Section 2.7. We determined that the
PostMark benchmark had only 2.4 I/O’s queued on average,
whereas the models were calibrated with a minimum value of
167. This obvious disparity is easily detectable by the model
software. The correct solution to this problem is to improve
the models, but a workaround exists in theheadroomparam-
eter, which is used by the solver to adjust the maximum de-
vice utilization, and thus produce solutions which use more

7This value is much more typical of the large, multipro-
cessor, I/O intensive workloads that we are targeting. Unfor-
tunately, the low number of processes used in the PostMark
benchmark result in concomitantly smaller queue lengths.
Reviewers: We will be extending our models to cover a
wider range of workloads

headroom
#processes 1.0 0.9

1 2 87% 2 87%
2 2 61% 3 78%
3 3 68% 4 81%
4 4 76% 5 84%
5 5 82% 6 88%

Table 3: LUs and transaction rate achieved (as a percentage
of the maximum observed for any number of LUs) for vari-
ousheadroomvalues with the PostMark workload.

or less resources (for smaller and greater values ofheadroom
respectively).

Table 3 shows, for various headroom values, the results
achieved from running the PostMark benchmark with Hip-
podrome. As can be seen, with lowerheadroomvalues,
the system will converge to a solution nearer to the maxi-
mum possible. A value of 0.9 works well for this workload,
resulting in systems that provide about 85% of the maxi-
mum possible performance, while using substantially fewer
resources – i.e. they find solutions that are well placed on
the price/performance curve. In each case, Hippodrome con-
verged in less than 6 loop iterations.

The wall clock time required for the loop to converge is
roughly 2 1/2 hours. The first iteration, starting from the
capacity-only design, takes about 40 minutes, and subse-
quent iterations take about 30 minutes. In each iteration, the
application runtime is roughly five to ten minutes. Almost all
the remaining time is spent copying the data from a master
copy to the correct location in the new design. The overall
size of the dataset was 50 GB.

4.3 Summary
The initial system configuration experiments show that, for
all workloads, Hippodrome satisfies the three properties in-
troduced in Section 3. First, the system converges to the cor-
rect number of LUs in only a small number of loop itera-
tions, at most four or five iterations, and sometimes in only
one or two. Second, the solutions are stable – they do not
oscillate between successive loop iterations, but remain con-
stant once the workload is satisfied. Third, the designs that
the system converges on are not over-provisioned; that is, the
storage system contains the minimum number of LUs capa-
ble of supporting the offered workload. Finally, Hippodrome
can leverage initial performance estimates (even inaccurate
ones) to more quickly find the correct storage solution.

These properties mean that Hippodrome can realistically
be used to automatically perform initial system configura-
tion. The system administrators need only provide capacity
information on the workload, and can then let Hippodrome
handle the details of configuring the rest of the system re-
sources, in the expectation that this will happen in an effi-

July 20, 2001 12 FAST

www.manaraa.com

cient manner. In particular, administrators do not have to
invest time and effort in the difficult task of deciding how to
lay out the storage design; nor do they have to worry about
whether the system will be able to support the application
workload.

5 Related Work

The EMC Symmetrix [10] and HP SureStore E XP512 Disk
Arrays [15] support configuration adaptation to handle over-
utilized LUs. They monitor LU utilization and use thresh-
olds, set by the administrator, to trigger load-balancing via
data migration within the array. The drawback is that they
are unable to predict whether the move will be an improve-
ment. Hippodrome’s use of performance models allows it to
evaluate whether a proposed migration would conflict with
an existing workload.

HP’s AutoRAID disk array [24] supports moving data be-
tween RAID5 and RAID1. AutoRAID keeps current data in
RAID1 (since it has better performance), and uses an LRU
policy based on write rate and capacity to migrate infre-
quently accessed data to RAID5, which has higher capac-
ity. Hippodrome will correctly place data based on the usage
patterns, and will expand the storage system if necessary to
support increases in the workload.

Teradata [6] is a commercial parallel shared nothing
database that uses a hash on the primary index of a database
table to statically partition the table across cluster nodes.
This data placement allows data parallelism and improves
the load balance. In contrast, Hippodrome dynamically reas-
signs stores, based on observed device utilizations.

River [5] is a cluster-based I/O architecture that uses
credit-based back pressure and graduated declustering (GD)
to distribute work in a manner proportional to the speed of
the recipient nodes. However, Rivers requires modifying
the application, and it makes short term load-balancing de-
cisions, so long term changes in the workload are not han-
dled. Conversely, Hippodrome makes long term decisions
and does not require application modification.

IBM’s work on capacity space management [20] guides
the re balancing of existing storage (and other) resources
using the life expectancy of the resource. Their approach,
described for a Lotus Notes-based environment, uses histor-
ical usage data to predict when the resource will exceed a
specified limit, and either extends the limits or moves the
workload. In contrast to this historically-based predictive ap-
proach, Hippodrome monitors the current performance of the
existing design, reconfiguring the system when necessary in
response to the workload’s actual behavior.

A few other, automated tools exist that are useful to ad-
ministrators of enterprise-class systems. The AutoAdmin in-
dex selection tool [8] can automatically “design” a suitable
set of indexes, given an input workload of SQL queries. It
has a component that intelligently searches the space of pos-
sible indexes, similar to Hippodrome’s design component,

and an evaluation component (model, in Hippodrome terms)
to determine the effectiveness of a particular selection based
on the estimates from the query optimizer. Oc´eano [4] fo-
cuses on managing an e-business computing utility without
human intervention, automatically allocating and configur-
ing servers and network interconnections in a data center.
It uses simple metrics for performance such as number of
active connections and overall response time; it is similar in
nature to the automatic loop in section 2.3 in its management
of compute and network resources.

Existing solutions to the file assignment problem [9, 25]
use heuristic optimization models to assign files to disks to
get improvements in I/O response times. The work described
on file allocation in [12, 21] will automatically determine an
optimal stripe width for files, and stripe those files over a set
of homogeneous disks. They then balance the load on those
files based on a form of “hotspot” analysis, and swapping
file blocks between “hot” and “cold” disks. Hippodrome can
expand or contract the set of devices used, supports RAID
systems, uses far more sophisticated performance models to
predict the effect of system modifications, and will iteratively
converge to a solution which supports the workload.

6 Conclusions and future work

Due to their size and complexity, modern storage systems
are extremely difficult to manage. Compounding this prob-
lem, system administrators are scarce and expensive. As a
result, most enterprise storage systems are over-provisioned
and overly expensive.

In this paper we have introduced the Hippodrome loop,
our approach to automating initial system configuration. To
achieve this automation, Hippodrome uses an iterative loop
consisting of three stages:analyze workload, design sys-
tem, andimplement design. The components that implement
these stages handle the problem of summarizing a work-
load, choosing which devices to use and how their param-
eters should be set, assigning the workload to the devices,
and implementing the design by setting the device parame-
ters and migrating the existing system to the new design.

We have shown that for the problems of initial system
configuration, the Hippodrome loop satisfies three important
properties:

� Rapid convergence: The loop converges in a small
number of iterations to the final system design.

� Stable design: The loop solution remains stable once it
has converged.

� Minimal resources: The loop uses the minimal re-
sources necessary to support the workload.

We have demonstrated these properties using synthetic I/O
workloads as well as the PostMark file system benchmark.

We have several ongoing research projects that extend or
rely upon Hippodrome. We plan to continue investigations

July 20, 2001 13 FAST

www.manaraa.com

into how to build better loop components. In particular, we
are working on new modeling techniques that we hope will
allow for easier, and more accurate, models. We are also
planning to conduct experiments on extremely large, com-
plex enterprise-scale applications, operating on multiple, dif-
ferent arrays.

We are also experimenting with the use of Hippodrome
to manage the ongoing evolution of a storage system. We
know that in practice real systems are changing, and Hippo-
drome should be able to respond to these changes to keep
the system appropriately provisioned at all times. Prelimi-
nary results, using synthetic workloads similar to those de-
scribed here, are promising. We anticipate that as long as the
workload does not change faster than the migration compo-
nent of the loop can copy the data from one configuration to
the next, the system can rapidly adjust to both increased and
decreased load. Using Hippodrome for on-line storage man-
agement also opens interesting research questions in control-
ling and/or maintaining quality of service, during both nor-
mal operation and while migration is taking place.

7 Acknowledgements

We would like to thank Aaron Brown and David Oppen-
heimer for their comments on this paper, and Dave Patter-
son, Arif Merchant and Erik Riedel for their comments on a
previous version of this paper.

REFERENCES
[1] E. Anderson. Simple table-based modeling of storage devices. Tech-

nical note, HPL-SSP-2001-4, HP Labs, July 2001.

[2] E. Anderson, J. Hall, J. Hartline, M.Hobbs, A. Karlin, R. Swami-
nathan, and J. Wilkes. An Experimental Study of Data Migration
Algorithms. In Proceedings of the 5th Workshop on Algorithm En-
gineering (WAE2001), University of Aarhus, Denmark, Aug. 2001.

[3] E. Anderson, M. Kallahalla, S. Spence, R. Swaminathan, and
Q. Wang. Ergastulum: An approach to solving the workload and de-
vice configuration problem. Technical note, HPL-SSP-2001-5, HP
Labs, July 2001.

[4] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Kr-
ishnakumar, D. P. Pazel, J. Pershing, and B. Rochwerger. Oc´eano –
SLA based management of a computing utility. InIntegrated Network
Management VII, May 2001.

[5] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler, J. M.
Hellerstein, D. Patterson, and K. Yelick. Cluster I/O with River: Mak-
ing the fast case common. InProceedings of the Sixth Workshop on
Input/Output in Parallel and Distributed Systems (IOPADS’99), pages
10–22, May 1999.

[6] C. Ballinger. Teradata database design 101: a primer on tera-
data physical database design and its advantages. Technical note,
NCR/Teradata, May 1998.

[7] E. Borowsky, R. Golding, P. Jacobson, A. Merchant, L. Schreier,
M. Spasojevic, and J. Wilkes. Capacity planning with phased work-
loads. InProceedings of the First Workshop on Software and Perfor-
mance (WOSP’98), pages 199–207, Oct 1998.

[8] S. Chaudhuri and V. Narasayya. An efficient, cost-driven index selec-
tion tool for Microsoft SQL Server. InProceedings of the 23rd VLDB
Conference, pages 146–55, Athens, Greece, September 1997.

[9] L. W. Dowdy and D. V. Foster. Comparative models of the file assign-
ment problem.ACM Computing Surveys, 14(2):287–313, June 1982.

[10] EMC Corporation.EMC ControlCenter Product Description Guide,
2000. Pub. No. 01748-9103.

[11] W. Fernandez and G. Lueker. Bin packing can be solved within 1+ε
in linear time.Combinatorica, 1(4):349–55, 1981.

[12] P. Z. G. Weikum and P. Scheuermann. Dynamic File Allocation in
Disk Arrays. InProceedings of the 1991 SIGMOD Conference, pages
406–415, 1991.

[13] M. Garey and D. Johnson.Computing and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, New
York, 1979.

[14] H. Group. Trends in e-business outsourcing and the rise of the man-
aged hosting model. White paper, www.exodus.com, January 2001.

[15] Hewlett-Packard Company.HP SureStore E Auto LUN XP User’s
guide, August 2000. Pub. No. B9340-90900.

[16] Hewlett-Packard Company.HP SureStore E Disk Array FC60 - Ad-
vanced User’s Guide, December 2000.

[17] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L.
Graham. Worst-case performance bounds for simple one-dimensional
packing algorithms. SIAM Journal on Computing, Springer Verlag
(Heidelberg, FRG and NewYork NY, USA)-Verlag, 3, 1974.

[18] J. Katcher. Postmark: a new file system benchmark. Technical report
TR-3022, Network Appliances, Oct 1997.

[19] C. Kenyon. Best-fit bin-packing with random order. InSODA: ACM-
SIAM Symposium on Discrete Algorithms, 1996.

[20] B. Pope and L. Mummert. Using capacity space methodology for
balancing server utilization: description and case studies. Research
report RC 21828, IBM T.J. Watson Research Center, 2000.

[21] P. Scheuermann, G. Weikum, and P. Zabback. Data partitioning and
load balancing in parallel disk systems.VLDB Journal: Very Large
Data Bases, 7(1):48–66, 1998.

[22] M. Uysal, G. A. Alvarez, and A. Merchant. A modular, analytical
throughput model for modern disk arrays. InProceedings of Ninth
MASCOTS, Aug. 2001.

[23] Veritas Software Cororation.Veritas Volume Manager Data Sheet,
July 2000. Pub. No. 90-00333-399.

[24] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID
hierarchical storage system.ACM Transactions on Computer Systems,
14(1):108–136, Feb. 1996.

[25] J. Wolf. The placement optimization program: a practical solution to
the disk file assignment problem. InProceedings of the ACM SIG-
METRICS Conference, pages 1–10, May 1989.

July 20, 2001 14 FAST

